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Abstract 20 

The National Water Center (NWC) implemented Height Above Nearest Drainage (HAND) for 21 

nationwide flood mapping in the continental United States. Although having a large coverage 22 

and high accuracy, the implementation (NWCH) relies heavily on the NHDPlus dataset which 23 

limits its potential to handle user defined datasets. Comparison of the NWCH model accuracy 24 

and computational performance against the original HAND is missing in the literature. This 25 

study evaluated the flood maps generated using NWCH and a web-based implementation of the 26 

original HAND (WBH). An in-depth sensitivity analysis was conducted for WBH. Results 27 

suggest that WBH can generate comparable inundation extent with few inputs in regions where 28 

the water depths from the synthetic and catchment rating curves are consistent. Multi-depth 29 

approaches help resolve underestimations of WBH. This study demonstrated the original 30 
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HAND's efficacy in flood mapping and its potential for applications for fast predictions with 31 

acceptable accuracy with limited computational resources. 32 

 33 
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1 Introduction 54 

Humans have been fighting against floods for centuries (Di Baldassarre et al. 2017, Ghosh and 55 

Kar 2018, de Lange 2019, Blöschl et al. 2020). Different from many other natural hazards, 56 

flooding is a result of combination of natural and anthropogenic causes (Munoz et al. 2018, 57 

Bentivenga et al. 2020, Nicholls et al. 2021). Paved roads and poorly designed urban pipeline 58 

networks can disrupt the drainage process and exacerbate urban flooding (Lancia et al. 2020, Sun 59 

et al. 2021). Levee and dam breach and inappropriate reservoir operation during heavy 60 

precipitation and flooding events can bring unexpected inundation to unprepared communities 61 

and cause massive direct (Tadesse and Fröhle 2020, Yildirim and Demir 2021) and indirect 62 

losses (Psomiadis et al. 2021, Alabbad et al. 2022). Rapid landscape transformation in both rural 63 

and urban areas, combined with climate change is quickly obsoleting our previous efforts of 64 

understanding, identifying (Haltas et al. 2021), and mapping flood events over the last few 65 

decades (Leitner et al. 2020, S Chegwidden et al. 2020, Abdrabo et al. 2022). 66 

One possible solution to cope with the fast-changing pace of the physical world is to conduct 67 

flood modeling with forecasts of factors that affect the magnitude and pattern of floods as input, 68 

such as new precipitation dataset collected in real-time (Seo et al. 2019), evaporation predictions 69 

(Le and Bae, 2020) obtained from general circulation models (GCMs), and future projection of 70 

landcover schemes (Leitner et al. 2020, Janizadeh et al. 2021). Another viable option is to create 71 

and use fast modeling frameworks that are data-parsimonious, robust, and computationally 72 

efficient based on web technologies (Sit et al. 2019, 2021, Xu et al. 2019, Agliamzanov et al. 73 

2020). Web applications are light-weighted and platform-independent compared to stand-alone 74 

software or plugins and thus are ideal for fast and flexible hydro-modeling and hydro-informatics 75 

applications. 76 
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Although being the most widely studied and used approach in the past few decades, 77 

hydrodynamic models are less likely to be the ideal future flood mapping framework to meet the 78 

rapidly growing need of being able to aid in fast response to and preparation for floods. In those 79 

usage scenarios, accuracy is no longer the only factor to consider as the weights of many other 80 

factors, especially speed, are on the rise. Currently, there are three main factors that prevent 81 

hydrodynamic models from fast applications to new locations or scenarios. First is the large data 82 

requirements of those models, such as channel profile, initial and side flows, and boundary 83 

conditions (Savage et al. 2016, Teng et al. 2017) versus the fact that regions with sufficient data 84 

that fulfill models’ requirements are still minority worldwide (Ebert-Uphoff et al. 2017), as 85 

many of those data come from on-site measurements or land surveys and often cannot be easily 86 

obtained or updated in a timely manner (Musser et al. 2016, McGrath et al. 2018). Lacking 87 

robustness is another shortcoming of many existing physics-based modeling frameworks. For 88 

example, many hydrodynamic computations are extremely sensitive to Manning’s roughness 89 

(Terezinha et al. 2017) which is an empirical coefficient for which the  initial value is usually 90 

obtained from tables, field surveys, and empirical formulas (Papaioannou et al. 2017). 91 

Calibration is always required to obtain the ideal roughness value that yields the best simulation 92 

result for study regions (Papaioannou et al. 2017, Garrote et al. 2021). As Manning’s n is mostly 93 

governed by the physical characteristics of the channel (Nohani 2019), it is sensitive to common 94 

channel alterations, such as vegetation growth and dredging. Lacking robustness means the 95 

model deployed to a new location needs substantial adjustments and calibrations before it can 96 

reflect the physical condition accurately and therefore will damage the efficiency of the entire 97 

model deployment. The final criterion to consider when selecting a model is computing costs, 98 

especially for flood forecasting and response applications. It is sometimes preferable to use 99 
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models that produce results fast with acceptable accuracy rather than models that produce precise 100 

results but take days or even weeks to run. For instance, in October 2015, South Carolina was hit 101 

by record-breaking precipitation which further triggered a flooding event with an estimated 0.1 102 

percent annual chance and tremendous economic loss and infrastructure damage (Mizzell et al. 103 

2017, Brandt et al. 2019). However, the official flood inundation maps done by USGS were 104 

released four months later (Musser et al. 2016, Li et al. 2018). It is obvious that such time-105 

consuming simulations will have very limited benefits to flood forecasts and quick response 106 

applications. 107 

Over the last few decades, simplified-conceptual models have grown rapidly in flood 108 

inundation mapping. Due to their reduced complexity of model structures, data, and 109 

computational requirements, these models ensure a better balance between accuracy and speed. 110 

Many of these models are topography-based techniques that require a digital elevation model 111 

(DEM) or digital terrain model (DTM) as the primary input and only have a few parameters to 112 

adjust (Nardi et al. 2019, Baldassarre et al. 2020) as they do not generally solve hydraulic 113 

equations or require initial and boundary conditions for calculation. These models can potentially 114 

benefit from DEM products of hyper-resolution algorithms (Demiray et al. 2021) in the future.  115 

Among all the simplified models, the Height Above Nearest Drainage (HAND) has been 116 

widely used for flood inundation extent prediction (Afshari et al. 2018, McGrath et al. 2018, 117 

Speckhann et al. 2018, Godbout et al. 2019, Jafarzadegan and Merwade 2019) because it 118 

produces comparable results to those produced by more complex modeling frameworks, such as 119 

the U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HEC-120 

RAS) (Afshari et al. 2018, Zheng et al. 2018, Li et al. 2022). A basic HAND-based inundation 121 

extent map is created by a pixel-by-pixel comparison between a particular water depth with the 122 
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HAND value, which is the elevation difference between the present pixel and the pixel in 123 

drainage networks to which it drains (Nobre et al. 2011). For a detailed introduction to the 124 

HAND model, see section 3.1. The HAND methodology has been adopted for many other 125 

research purposes such as uncertainty analysis (Jafarzadegan and Merwade 2019, Michael 126 

Johnson et al. 2019) and reach-averaged rating curve generation (Zheng et al. 2018). Moreover, 127 

rather than simply applying the framework for analysis and comparison, several studies have 128 

been conducted to improve the framework's accuracy (Zheng et al. 2018, Shastry et al. 2019) 129 

and computational efficiency (Liu et al. 2018). 130 

Currently, there is a substantial number of research studies that compare HAND with other 131 

flood modeling approaches, such as FLO-2D model (Komolafe et al. 2021), 1D/2D shallow 132 

water equations (Hocini et al. 2020), multivariant linear regression algorithm (Lababidi 2021), 133 

AutoRoute and HEC-RAS 2D (Afshari et al. 2018), and Planar plane and Inclined plane 134 

(McGrath et al. 2018). In the United States, the National Water Center (NWC) of the National 135 

Oceanic and Atmospheric Administration (NOAA) has developed a version of HAND to support 136 

national flood forecasting products. NOAA applies streamflow estimates from the National 137 

Water Model (NWM) to a nationwide HAND grid to generate national inundation maps by 138 

converting those stream flows to water depth to compare with the HAND values at the catchment 139 

level (Maidment, 2017), It is worth noting that the National Water Center’s HAND approach 140 

(herein referred to as NWCH) has some major implementation deviations from the original 141 

HAND methodology in order to utilize data from the NHDPlus dataset. For example, in NWCH, 142 

the stream network starts from pre-defined channel head sources and it is forced to align with 143 

NHDPlus streams (Zheng et al. 2018). NWCH also used �� instead of �� flow model to 144 

compute the vertical distance (HAND value) of any hillslope pixels to the stream (Zheng et al. 145 
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2018). Last but not least, the flood extent of NWCH is generated in about 2.7 million reaches in 146 

the continental United States with the inundation condition of each pixel inside any given reach 147 

controlled by a distinct rating curve of that reach (Maidment 2017, Michael Johnson et al. 2019). 148 

Readers will find more details about the original HAND methodology and NWCH in sections 149 

3.1 and 3.2. Although having some customized adaptations as discussed, many studies with a 150 

study area inside the US utilized the NWCH framework because of the accuracy and large 151 

coverage of the products for secondary analyses such as inundation mapping error assessment 152 

(Godbout et al. 2019), river channel geometry and rating curve estimation (Zheng et al. 2018), 153 

reach-level comparison against remotely sensed inundation maps (Michael Johnson et al. 2019). 154 

By contrast, the original HAND framework failed to receive as much research interest in the 155 

United States, which, therefore, necessitates a comparison between the NWCH and the original 156 

HAND approach. The reason for such a comparison is multi-folded. First, the NWCH approach 157 

does not transplant easily to other areas or countries due to the data availability issue of its 158 

dependencies. In addition, as the drainage network of NWCH is determined by pre-defined 159 

channel heads and stream networks, it does not adapt well to frequent changes in geo-morphic 160 

factors, such as elevation changes due to land cover change, urbanization, and dredging. 161 

Currently, the NWCH HAND layer is not designed to be updated frequently (Liu et al. 2016) and 162 

is thus not able to incorporate constant changes in the abovementioned physical factors. 163 

Furthermore, it is not easy for NWCH to keep up with the pace at which new data emerge, such 164 

as the crowdsourced water depth observations (McDougall and Temple-Watts 2012, Smith et al. 165 

2017) and newly introduced high-resolution satellite-derived DEM products (Huber et al. 2021, 166 

Tapete et al. 2021). On the contrary, the original HAND is more flexible and adapts to new data 167 
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much more easily. However, so far, the comparisons between different implementations of the 168 

HAND methodology are not well documented in the literature.  169 

Therefore, the first objective of this study is to compare the flood maps generated using the 170 

NWCH and the original HAND method and to evaluate the NWCH flood maps using those 171 

generated with HEC-RAS and approved by FEMA. The NWCH is selected because it is, so far, 172 

the only implementation of HAND done by a national agency or institute and has been widely 173 

used and well-documented in the literature.  174 

We then selected a client-side web-based inundation mapping system implemented by Hu 175 

and Demir (2021) (herein referred to as WBH) as the other comparison target representing the 176 

original HAND procedure.  177 

It is reasonable that the original HAND may generate less accurate flood inundation extents 178 

in some cases because it is less demanding in data and computational resources. Therefore, the 179 

second objective of this study is to try to investigate the mechanism of the original HAND model 180 

through a parameter sensitivity analysis, analyze when this simpler method fails to bring 181 

satisfying results, and investigate how its performance can be improved without considerably 182 

increasing model complexity and data requirement.  183 

Finally, the study summarizes the results with an in-depth analysis of the original HAND's 184 

limitations, a detailed discussion based on model sensitivity analysis, and the computational 185 

efficiency compared with NWCH implementation with the hope of further extending current 186 

understanding of the HAND model and providing results that could help local communities, 187 

stakeholders, and decision-makers (Ewing and Demir 2021) with implementing their own flood 188 

mapping applications based on HAND. 189 
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2 Study Area and Data Collection 190 

The sub-watersheds that encompass the cities of Clarksville and Rock Valley, Iowa are selected 191 

as the area of study. The region for Clarksville study consists of two HUC 12 sub-watersheds, 192 

#070802020704 and #070802020701, that together cover 145 km2 and have a total stream length 193 

of 112 km. The study region for Rock Valley is included in the HUC 12 sub-watershed 194 

#101720240804 with a drainage area of 105 km2 and a total stream length of 66 km. The study 195 

area is depicted in Figure 1. These two study areas will be referred to as Clarksville and Rock 196 

Valley for the sake of simplicity. This simply indicates that the study areas are located near these 197 

two cities and does not imply that we are studying urban flooding in this paper. The sub-198 

watersheds are chosen considering data availability and computational efficiency. 199 

2.1 Reference Flood Inundation Maps and Comparison Scope 200 

The Iowa Flood Center's (IFC) statewide floodplain mapping effort (Gilles et al. 2012) provided 201 

inundation extent and streamflow predictions using HEC-RAS modeling for areas of interest in 202 

this study and those flood maps will be used as reference flood maps for validation. The major 203 

reason for choosing the HEC-RAS modeling results as the reference is two-folded. First, those 204 

are relatively recent products that were generated after the 2008 Iowa floods compared to some 205 

other widely used reference sources such as Federal Emergency Management Agency (FEMA) 206 

flood risk maps. More importantly, those simulations provide flood maps with high and 207 

consistent quality that are generated with FEMA guidelines for the state of Iowa and therefore 208 

are more trustworthy. Given the above reasons, we find it unnecessary to create reference maps 209 

on our own or to consider other reference sources. The reference maps consist of a collection of 210 

inundation extent maps corresponding to a series of stage values separated by 0.5 foot.  211 
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 212 

Figure 1. Location of the combined sub-watersheds #070802020704 and #070802020701, which contain 213 

the City of Clarksville, and the sub-watershed #101720240804, which contains the City of Rock Valley, 214 
Iowa 215 

The NWCH inundation extent maps are the result of simulations run at the National Water 216 

Center with FIM 3.0.9.0 fr. Those maps are developed specifically for this study at the National 217 

Water Center. The WBH inundation maps are generated using the web-based flood inundation 218 

mapping system developed by Hu and Demir (2021) and enhanced by (Li and Demir 2022) (see 219 

subsection 2.3 for a brief introduction on the system). The NWCH inundation extent was 220 

provided within the two masks shown by the purple areas of Figure 2 and each of the two masks 221 

consists of several catchments pre-defined in NHDPlus dataset. The NHDPlus dataset contains 222 

about 2.7 million catchments for the continental United States. They each averages a surface area 223 

of 3 km2 and a length of 2 km and is traversed by a single flow line (Maidment 2017). Those 224 

catchments are the smallest units that the simulation of NWCH runs on. Figure 2 shows the 225 
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actual analysis (calculation) scope in green for WBH and evaluation (masks) areas in purple for 226 

Rock Valley and Clarksville. 227 

 228 

Figure 2. Location of catchments in which we compare flood inundation extent from NWCH, WBH, and 229 

the reference maps for Rock Valley (a) and for Clarksville (b) 230 

 231 

 There are two primary reasons for using a restricted area for comparison. The first is that the 232 

NWCH flood maps are obtained by putting together flood extents calculated in each of those 233 

small catchments. In this study, the catchments shown in Figure 2 were selected to represent the 234 

inundation condition of the study areas. Another reason is that detailed reference flood extent 235 

maps are only available in the vicinity of some Iowa cities. Therefore, using those two masks 236 

helps confine our analysis to areas surrounding the two study cities. We will investigate the 50-, 237 

100-, and 500-year flooding scenarios in this study. The area and stream length of each 238 

catchment are listed in Table 1.  239 

Table 1. Summary of terrain characteristics of the catchments in Rock Valley and Clarksville 240 

Rock Valley Clarksville 

HydroID 
Area 

(km2) 

Median Thalweg 

Elevation (m) 

length 

(m) 
HydroID 

Area 

(km2) 

Median Thalweg 

Elevation (m) 

length 

(m) 

21110025 7.75 370.86 1434 17450065 0.92 281.39 1461 

21110023 0.52 372.28 1437 17450066 1.54 280.51 1465 
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21110021 0.76 373.78 1436 17450067 18.50 280.14 1414 

21110022 15.29 372.87 1438 17450060 0.13 279.94 634 

21110024 1.13 371.37 1437 17450058 2.44 279.73 1013 

21110029 1.74 375.81 1350 17450059 0.41 279.50 996 

21110026 3.41 369.97 1440 17450057 1.38 278.37 1126 

21110020 1.46 374.77 1442 17450055 1.01 278.30 1073 

21110866 5.10 377.15 1272 17450056 2.25 278.06 1046 

 241 

2.2 NWCH Inundation Mapping and Data Requirements 242 

The National Water Center leverages NHDPlus datasets to produce NWCH version 3.0 243 

technique (NOAA 2021) to fulfill its directive to provide national inundation predictions. The 244 

datasets required for this task include HAND grids (full-resolution and mainstem configurations), 245 

synthetic rating curves (full-resolution and mainstem configurations), model network cross-246 

walking information (full-resolution and mainstem configurations), a representation of the 247 

HAND-derived catchments (full resolution and mainstem configurations), and catchment-248 

specific flow values. The flow values can be supplied to the model by a river discharge model, 249 

such as the National Water Model, or from historic observations or other sources (i.e., 250 

crowdsourcing). 251 

NWCH 3.0 uses two configurations, full-resolution and mainstem. The full-resolution 252 

configuration’s stream network resembles that of the NWM. The mainstem configuration 253 

resembles only the stream segments that are downstream of an official Advanced Hydrologic 254 

Forecasting Service (AHPS) forecast site. NWCH 3.0 uses a mainstem configuration to better 255 

represent inundation in higher-order streams, whereas the full-resolution configuration is subject 256 

to underprediction of inundation extent in higher-order streams, primarily because of artificial 257 

restriction of inundation by catchment boundaries. The NWCH implementation can be found at 258 
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the GitHub repository of Flood Inundation Mapping for U.S. National Water Model 259 

(https://github.com/NOAA-OWP/inundation-mapping).  260 

2.3 WBH Inundation Mapping and Data Requirements 261 

The WBH system can provide on-demand inundation predictions and hydro-spatial analysis 262 

products utilizing both pre-stored and user-supplied datasets. With the necessary dataset, the 263 

system can work with a variety of different calculation methods, perform result comparison and 264 

hydro-spatial analysis, and perform flood mitigation analysis in any study region provided by the 265 

user (Li and Demir, 2022). Therefore, it enables the performance testing of models with varied 266 

configurations for this study. 267 

The amount of data required for the system to generate inundation maps depends on the 268 

products desired by users and the corresponding calculation procedures. Data and information 269 

required in this study include NED DEM and river networks from NHDPlus dataset, LiDAR-270 

based DEM, synthetic rating curves derived from HEC-RAS simulations for the two study areas, 271 

reach-averaged rating curves and reach information (such as location, area, and stream length as 272 

specified in Table 1), and location and relevant information of the closest USGS gauges for the 273 

two study areas (#06483500 for Rock Valley and #05462000 for Clarksville). 274 

To compare the performance of NWCH with the WBH, the DEM raster from the NHDPlus is 275 

clipped, translated to meters, and resampled to 10m from the original 30m resolution. For 276 

sensitivity analysis with various model setups, the 1-m LiDAR-based DEM was resampled to 5-277 

m resolution. The 10m resolution was chosen to maintain consistency with the NWCH data, and 278 

the 5m resolution was chosen to balance computing efficiency and accuracy for sensitivity 279 

analysis.  280 

It is worth noting that some of the items stated above are required simply because we're 281 

comparing our results to those from NWCH and therefore need to maintain data consistency. 282 
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Indeed, the WBH system is far more adaptable in terms of data requirements. For example, in 283 

this study, we need the rating curves to determine the stage for a specific discharge, but we can 284 

also feed the system with water depth measurements or observations. Similarly, while the river 285 

network and information about USGS gauges aid in deciding the placement of outlet pixels in 286 

this study, the location of outlet pixels can be completely custom without restrictions. 287 

3 Methodology 288 

3.1 HAND Model 289 

Height Above Nearest Drainage (HAND) model is a quantitative terrain descriptor initially 290 

introduced by (Rennó et al. 2008). HAND values are the differences in elevation between each 291 

pixel on hillslope and the nearest point in the river network that drains it. Numerous studies have 292 

established that the HAND model accurately represents the soil water environment (Nobre et al. 293 

2011). Computing the HAND value starts from removing spurious depressions and flats from the 294 

raw DEM to make it hydrologically coherent (Rennó et al. 2008, Nobre et al. 2011). Then, the 295 

flow direction of each pixel on the DEM is calculated using one of the widely adopted 296 

algorithms, e.g., �� (Mark 1984), or �∞ (Tarboton 1997). 297 

Next, we calculate the accumulating area of each pixel by taking the total number of 298 

upstream pixels the current one drains. By comparing the accumulating values with a predefined 299 

drainage threshold, we separate drainage points (dark-color grid cells in Figure 3c) from non-300 

drainage ones. Then, we divide all non-drainage pixels into sub-drainage areas based on which 301 

drainage point they drain to as shown in Figure 3c. For instance, all light green and light red 302 

pixels in Figure 3c are all non-drainage pixels, but they are colored differently because they flow 303 

to different stream pixels (dark red and dark green) as indicated by the flow direction of each 304 

pixel in Figure 3b. Finally, the HAND value of each non-drainage pixel is obtained by 305 

subtracting the elevation of the nearest drainage pixel from its original elevation, which is also 306 
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called elevation normalization. The color division shown in Figures 3c and 3d just determines to 307 

which drainage pixel the elevation of non-drainage pixels should be normalized and serves no 308 

other purpose. For example, the HAND value of the left-most light green pixel is 5 because its 309 

HAND value is determined by subtracting the elevation of the darker green pixel (elevation 16) 310 

one row under it from its original elevation (21). That dark green pixel is the nearest drainage 311 

pixel of the left-most light green according to flow direction. After each pixel got its HAND 312 

value, it is no longer necessary to distinguish between each other. For instance, the bottom-most 313 

blue pixel drains all pixels above it, but it has no impact on HAND values of the green and red 314 

pixels as those are controlled by upstream drainage points and are determined before the flow 315 

converges to any blue pixels. The HAND values for drainage pixels are set to zero meaning they 316 

do not have drainage potential as they are the lowest points within the drainage network. The 317 

final product or HAND model is a matrix of HAND values of the same numbers of column and 318 

row as the DEM processed. Figure 3 shows a graphic representation of the HAND procedure.  319 

 320 

Figure 3. Major calculation steps of the HAND model. Figure reproduced from Rebolho et al. (2018) 321 

3.2 NWCH Inundation Mapping 322 

In the NWCH, each river segment is encoded with a “feature_id” and a discharge value. Because 323 

the NWCH-derived hydrologic network differs from the National Water Model network, model 324 

crosswalk information is needed to associate NWM discharge values with the NHDPlus 325 

catchments. After crosswalking the NWM discharge values to the NWCH catchments, 326 
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catchment-specific synthetic rating curves are used to interpolate stage heights from the 327 

discharge values on a catchment-by-catchment basis. This interpolation results in a spatial array 328 

where values are encoded according to the catchment-specific interpolated stages. The HAND 329 

grid is then subtracted from this spatial array to derive inundation depths. 330 

This process is performed for both the NWCH full-resolution and the mainstem 331 

configurations to generate two depth grids for the same area. A follow-up procedure is 332 

performed to mosaic the full-resolution and mainstem grids, prioritizing the maximum pixel 333 

value, i.e., maximum depth, when the same pixel location has a value provided by both 334 

configurations. Depending on the use-cases for the inundation information, the final mosaicked 335 

depth grid may be reclassified to a binary wet/dry inundation map and converted to a polygon.  336 

For the purpose of this analysis, only the NWCH full-resolution configuration was used, i.e., 337 

not the full-resolution and mainstem composite inundation map. 338 

3.3 WBH Inundation Mapping 339 

WBH compares the HAND value of each pixel directly with depth values to decide the 340 

inundation extent. The stages may come from measurements at hydrometric stations, estimates 341 

obtained from rating curves, and crowd-sourced observations collected during flooding events on 342 

social media. In this study, the stage estimates for the entire study area and each catchment are 343 

obtained from the synthetic rating curve by HEC-RAS and the reach-averaged rating curves 344 

produced along with NWCH’s generation of the HAND layer (Michael Johnson et al. 2019). . 345 

We developed four methods for calculating the inundation extents of the WBH including a 346 

single depth (��), and three multi-depth approaches, namely area-weighted depth (��), stream-347 

length-weighted depth (��), and the local depth (����	
) approaches. As implied by the name, �� 348 

applies a single water-depth value calculated from the stage estimate using HEC-RAS synthetic 349 

rating curve at the USGS gauge location to the entire study area. Whereas ��, ��, and ����	
 350 
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make use of a group of water depths derived from reach-averaged rating curves for each of the 351 

previously specified catchments summarized in Figure 2 and Table 1. The difference between 352 

these three multi-depth approaches lies in how we calculate these depths. For ����	
, water 353 

depths corresponding to stream flows of return periods of 50-, 100-, and 500-year in each 354 

catchment will be used without further processing, which thus allows each catchment in Figure 2 355 

to have its own water depth to compare with HAND values. Whereas �� and �� take the average 356 

of those water depths weighted by catchment areas and stream lengths and then the average 357 

values will be shared among all pixels without differentiating which catchment they belong to. In 358 

this study, we use Eq. 1 to calculate the water depth at a specific location. 359 

� = � + ����  ± �	�� − ��	���� (Eq. 1) 
 360 

D and S refer to water depth and stage height, which are measured against the bottom of the 361 

river channel and a certain datum, respectively. The bottom elevation of the river channel can be 362 

different from the elevation of the datum for stage measurements. In those cases, the stage and 363 

water depth can be different. E !" is the elevation of datum against which stage values are 364 

measured. E#$ %!# is the elevation of the location for which we calculate the water depths. F$'( is 365 

the elevation converting variable when the elevation datum of stages (normally NGVD29 for 366 

USGS gauges) is different from the DEM we used (NAVD88 in our case). 367 

The two USGS gauges serve as the reference points for ��. Because there are no USGS 368 

gauges in each small catchment, we adopted the median elevation of thalweg of each reach as the 369 

elevation of references for the multi-depth ones (��, ��, and ����	
). These elevation values 370 

have the same vertical datum as other DEM pixels and thus do not need datum conversion.  371 

3.4 Performance Comparison between NWCH and WBH 372 

The WBH inundation extent maps for 50-, 100-, and 500-year flooding scenarios were created 373 

and compared to corresponding reference extents and the NWCH extents. Here, we only use �� 374 
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for comparison to see if WBH can produce comparable results with the minimum data, namely, a 375 

DEM, a drainage threshold value without calibration, and a single water depth. The same 10-m 376 

DEM used by the NWCH is fed into the WBH, it then performs a series of automated processes 377 

to remove artificial pits and flats from the raw DEM and create a hydrologically coherent surface. 378 

The depth data was derived using Eq. 1 and the stage estimates from the synthetic rating curve. 379 

For the drainage threshold, we assumed that no additional information or guidelines were 380 

available and thus chose 4.0 km2 as previous studies had shown its efficacy (Nobre et al. 2016). 381 

3.5 Sensitivity Analysis of the Performance of WBH 382 

Model configurations with various drainage thresholds and depth values are computed and 383 

evaluated. As stated in subsection 3.1, drainage pixels have a HAND value of 0, and they are the 384 

points to which the elevation of non-drainage pixels is normalized. By changing the threshold 385 

value, we can modify the numbers of drainage pixels and thus modify the simulated network. In 386 

this study, the threshold being tested starts from 1 percent of the study area and increases by 1% 387 

each time until the model performance stabilizes. For each flooding scenario investigated in this 388 

study, ��, ��, ��, and ����	
 are computed and applied along with each threshold value, 389 

resulting in ) × + × (,- + ,.) different model configurations, where e is the numbers of flooding 390 

scenarios, + is the number of depth calculating approaches, and ,- and ,. and the number of 391 

tested threshold values in Rock Valley and Clarksville, respectively. 392 

3.6 Evaluating Model Performance 393 

A two-by-two contingency Matrix (Provost 1998) was used to categorize any pixel on a map's 394 

simulated inundation conditions into one of four classes: True-Positive (TP) means the pixel is 395 

predicted inundation by the model and indicated inundation on the reference map; True-Negative 396 

(TN) means the pixel is predicted dry by both the model and the reference; False-Positive (FP) 397 

means the pixel is predicted inundated by the model but is dry on the reference map; and False-398 
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Negative (FN) the pixel is predicted dry by the model but is actually inundated by the reference. 399 

The contingency matrix is depicted in Figure 4.  400 

 401 

Figure 4. The contingency matrix to indicate the inundation condition of any pixel on predicted maps and 402 

the reference map. Figure reproduced from Li et al. (2022) 403 

 404 

To further facilitate interpretation, we will compare the predicted extents with the reference 405 

visually and mathematically with the following indexes. Numerous indexes are available in the 406 

literature that can be used to evaluate model performance (Wilks 2011). To assess the agreement 407 

between the two maps, we used Proportion Correct, Bias, Hit Rate, Kappa value, and Fitness-408 

statistic. 409 

Proportion Correct (PC) has a value between 0 and 1, with 1 being the best. PC is a widely 410 

used index with the limitation of being unable to distinguish between FP and FN because they 411 

are treated equally in Eq. 2. It is calculated as follows: 412 

/0 =  
1/ + 12

1/ + �2 + �/ + 12
(Eq. 2) 413 

 414 

Bias (B) is a positive value that with the best possible value of 1. B is not an accuracy 415 

measure (Wilks 2011) but indicates whether the scene is overestimated (B > 1) or underestimated 416 

(B < 1) in general. It is worth noting that B is not a measurement for model performance but an 417 

indicator of how many overestimations the model is made versus underestimations. In other 418 
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words, B equals one does not necessarily mean the model achieves a high accuracy but just 419 

means the model made about the same amount of over- and underestimations. B is calculated as: 420 

4 =  
1/ + �/
1/ + �2

(Eq. 3) 421 

 422 

Hit Rate (H) ranges between 0 and 1 with the best possible value of 1. H represents the ratio 423 

of inundated pixels on the reference maps that are captured by the predictions. H is also referred 424 

to as the Probability of Detection (POD), the true-positive fraction, and the sensitivity. (Wilks 425 

2011). It is calculated as:  426 

6 =  
1/

1/ + �2
(Eq. 4) 427 

 428 

Kappa Value (K) can be negative, indicating that the prediction is worse than a random guess 429 

(Juurlink and Detsky 2005). The best value for K is 1. It is calculated as follows: 430 

K =  
2(1/ + 12) − 9(1/ + �/) × (1/ + �2) + (�/ + 12)  × (�2 + 12):

2. − 9(1/ + �/) × (1/ + �2) + (�/ + 12) × (�2 + 12):
(Eq. 5) 431 

 432 

Fitness Statistics (F), also known as Critical Success Index (CSI) (Wilks 2011), ranges 433 

between 0 to 1 with the best possible value of 1. It is calculated as:  434 

� =  
1/

1/ + �2 + �/
(Eq. 6) 435 

 436 

K and F complement each other. K focuses more on the dry pixels and are prone to bias 437 

when there are much more correctly predicted dry pixels than correctly predicted flooded pixels 438 

(Afshari et al. 2018). Whereas F stresses more on the consistency of the flooded pixels on both 439 

maps. 440 
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4 Results  441 

4.1 Comparison of NWCH and WBH Flood Inundation Predictions 442 

Table 2 summarizes the comparison between NWCH and WBH for Clarksville and Rock Valley. 443 

The 4.0 km2 drainage threshold for WBH is selected based on previous findings of related 444 

research (Nobre et al. 2016). 445 

Table 2. Comparison summary between NWCH and WBH for Clarksville and Rock Valley 446 

Study Area DEM 
WBH Drainage 

Threshold 

Return Periods Involved and 

Corresponding Results 

Performance 

Metrics 

Rock Valley 10m NED 

DEM 

4.0 km2 100- and 500-year (Fig. 5 and Table 3) PC1, B2, H1, 

K1, F1 Clarksville 4.0 km2 100- and 500-year (Fig. 6 and Table 3) 

1: The higher the metrics value, the better the performance is. 447 
2: The closer the value is to one, the more balanced the results are in terms of overestimation and underestimation. 448 
 449 
The results of the NWCH and WBH compared to the reference inundation extent for Rock 450 

Valley and Clarksville in 100- and 500-year flooding scenarios are shown in Figures 5 and 6. 451 

Table 3 displays the evaluating indexes in comparison to the reference.  452 
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 453 

Figure 5. Predictions of inundation extent in Rock Valley compared to reference maps. (a) Evaluation of 454 

WBH in 100-year flood scenario, (b) evaluation of WBH in 500-year flood scenario, (c) evaluation of 455 

NWCH in 100-year flood scenario, (d) evaluation of NWCH in 500-year flood scenario  456 

 457 

Comparing the False-Positive areas (in green) on 100-year predictions with those on 500-458 

year predictions in Figure 5, the WBH generates slightly less overestimation for the 500-year 459 

flooding scenario around the lower-left and upper-right corners but more underestimation (in red) 460 

in the middle of the map. When compared to the WBH, the NWCH predicts slightly more 461 

overestimation along the upper border of the inundation extent in both flooding scenarios while 462 

producing less underestimation in the middle of the image in the 500-year one. According to the 463 

B index in Table 3, the predictions of the NWCH and WBH approaches for the 100-year flood 464 



23 

 

are slightly underpredicted and overpredicted, respectively, and it is the opposite for the 500-year 465 

flood. Other indices show no significant difference in performance between the two modeling 466 

frameworks for both flooding events. 467 

Table 3. Numbers of pixels classified as True-Positive, False-Negative, False-Positive, and True-Negative 468 

when compared to reference maps and the corresponding evaluating indexes. 469 

flooding event Threshold (km2) PC B H K F 

R
o

ck
 V

al
le

y
 

100-yr event 
- NWCH 0.95 0.99 0.92 0.89 0.86 

4km2 WBH 0.94 1.04 0.93 0.87 0.84 

500-yr event 
- NWCH 0.94 1.06 0.94 0.87 0.84 

4km2 WBH 0.94 0.98 0.91 0.87 0.84 

C
la

rk
sv

il
le

 100-yr event 
- NWCH 0.93 1.06 0.97 0.87 0.88 

4km2 WBH 0.83 0.68 0.67 0.66 0.66 

500-yr event 
- NWCH 0.95 1.02 0.96 0.89 0.91 

4km2 WBH 0.87 0.77 0.76 0.74 0.75 

 470 

In Clarksville, the WBH with �� failed to capture as many inundated pixels on the reference 471 

map as the NWCH does for both flooding events, as shown in Figure 6 by comparing (a) with (c) 472 

and comparing (b) with (d). On both banks of the main channel's central portion, there is 473 

significant underestimation on the WBH map (a and b). NWCH extents, on the other hand, are 474 

generally more accurate while being slightly overestimated for both events. The performance of 475 

NWCH in the 500-year scenario is more balanced in terms of the amount of over and 476 

underestimation than in the 100-year scenario, as shown in Table 3.  477 
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 478 

Figure 6. Predictions of inundation extent in Clarksville compared to reference maps. (a) Evaluation of 479 

WBH in 100-year flood scenario, (b) evaluation of WBH in 500-year flood scenario, (c) evaluation of 480 
NWCH in 100-year flood scenario, (d) evaluation of NWCH in 500-year flood scenario  481 

4.2 Performance of WBH with Different Model Configurations 482 

Table 4 summarizes the comparisons aimed at demonstrating the sensitivity of WBH toward its 483 

model parameters. We did not include the drainage threshold exceeding 17% of the study area in 484 

Clarksville, because the result became quite stable once the drainage area exceeds about 14% of 485 

the study area, which is also confirmed by performance curves of Rock Valley depicted in Figure 486 

7.  487 

Table 4. Comparison summary for model parameter sensitivity analysis 488 

Study Area DEM Drainage Threshold 

Range (%) 

Return Periods Involved and 

Corresponding Result Figures  

Performance 

Metrics 
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Rock Valley 5m LiDAR 

DEM 

1-31 50- (Fig. 7), 100-, 500-year (Fig. 8) PC1, B2, H1, 

K1, F1 

Clarksville 1-17 50- (Fig. 9), 100-, 500-year (Fig. 10) 

1: The higher the metrics value, the better the performance is. 489 
2: The closer the value is to one, the more balanced the results are in terms of overestimation and underestimation. 490 
 491 
For the 50-year flooding scenario in Rock Valley, Figure 7 depicts the WBH model performance 492 

among 31 threshold values and four water depth calculation approaches. As illustrated in Figure 493 

7, the pattern of performance variation does not differ significantly between ��, ��, ��, and 494 

����	
. The B index is high when the threshold of 1% of total study area is used, indicating that 495 

the scene is overestimated. As the threshold increases, B and H decrease while PC, K, and F rise, 496 

indicating that the performance becomes balanced in terms of the number of overestimations and 497 

underestimations. Some indexes show abrupt changes at 2% and 4%. After exceeding the 8% 498 

threshold for the total calculation area, the performance becomes stable. For scenarios with ��, 499 

��, and �� approaches, the stable performance results are slightly overestimated (B value greater 500 

than 1) with PC and H values close to each other. Whereas the inundation extent is moderately 501 

underestimated for scenarios with ����	
.  502 

 503 
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Figure 7. Comparing the model performance in Rock Valley in the 50-year flood scenario using �� (a), 504 

��(b), ����	
 (c), and �� (d) approaches 505 

 506 

Figure 8 depicts the bar charts with grouped indexes for the 8% of the study area after which 507 

the model performance becomes steady. As shown in Figure 8 (a), all the indexes are similar 508 

among the configurations utilizing ��, ��, and �� except for H and B, for which �� has slightly 509 

larger values The model configuration with ����	
 produces the lowest performance for the 100-510 

year flood among the three multi-depth approaches, with lower values for all indexes. The 511 

patterns for F, K, and PC are the same for the 500-year scenario presented in Figure 8 (b), as the 512 

value using �� is the largest, followed by �� and then ����	
, and finally the value using ��. For 513 

B and H, the greatest value comes from the �� configuration, followed by comparative values 514 

from �� and ����	
 cases, and finally the one using ��. As B and H increase with the increase of 515 

positive predictions, a high value of B and H indicates the case using �� generates more 516 

overestimation compared to the other three approaches.  517 

 518 

Figure 8. Comparing the stable performance of WBH at a fixed threshold of 8% for Rock Valley in 100-519 

year (a) and 500-year (b) flood scenarios  520 

 521 

Figure 9 shows model performance variation for Clarksville in the 50-year flooding event. 522 

There are two major changing points the model performance line among all thresholds tested. 523 

The two changes occur when the thresholds are about 6 and 12% of the study area, 524 
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corresponding to the amount of 8.7 and 17.41 km2. The 6 and 12% thresholds divide the 525 

performance curves into three stair-like ranges, namely below 6%, between 6 and 12%, and 526 

above 12%, which the performances are similar to each other.  527 

 528 

Figure 9. Model performance in Clarksville in the 50-year flood scenario using �� (a), ��(b), ����	
 (c), 529 

and �� (d) approaches 530 

 531 

Figure 10 shows the summarizing bar charts of grouped indexes with the four water depths 532 

and a drainage threshold of 12% of the study area for the 100- and 500-year flooding scenarios in 533 

Clarksville. As shown by Figure 10 that the performance with �� and �� approaches are similar, 534 

followed by the configuration with ����	
, while �� leads to the worst matching case for 535 

Clarksville in both flooding scenarios. Also, all configurations except for the ones with �� show 536 

overestimated inundation extent in general, whereas the B index for the case with �� is about 0.7 537 

in both flooding scenarios indicating there are major underestimations in the prediction.  538 



28 

 

 539 

Figure 10. Comparing the stable performance of WBH at a fixed drainage threshold of 12% for 540 

Clarksville in 100-year (a) and 500-year (b) flood scenarios 541 

 542 

Comparing Figure 7 results with Figure 9 we see that the significant performance changes for 543 

Rock Valley occur between the drainage thresholds of 1% to 5 %, whereas it occurs between 5% 544 

to 12 % for Clarksville. For both areas, the results of three multi-depth approaches are quite 545 

comparable, while ����	
 is slightly worse but better balanced in the number of overestimations 546 

versus underestimations. The overall performance increases as the drainage threshold increases 547 

until it reaches the threshold of about 8 %. For Clarksville, �� failed to catch as many inundated 548 

pixels indicated on the reference map compared to the other three techniques. The extent 549 

predicted by �� is underestimated even with a 1% drainage threshold which corresponds to 1.45 550 

km2 which is the smallest threshold tested. Therefore, as the threshold increases, it brings more 551 

underestimations and lowers the model performance. The performance with the multi-depth 552 

approaches, by contrast, is more accurate and resistant to underestimation. 553 

Figure 11 depicted the influence of changes in thresholds on flood extent for thresholds 1%, 554 

4%, 8%, and 12% of the area of Rock Valley and Clarksville with �� in the 50-year scenario. 555 
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 556 

Figure 11. Inundation extent in 50-year scenario in Rock valley and Clarksville with drainage thresholds 557 

equal to 1%, 4%, 8%, and 12% of the study areas 558 

 559 

As mentioned in previous sections, increasing drainage thresholds will remove some 560 

drainage pixels from the previous stream network. A shrinking stream network means the nearest 561 

drainage points of some hillslope pixels will move downward along the river channel due to the 562 

cancelation of their previous drainage pixels. A more downstream drainage pixel usually leads to 563 

an increase in the HAND value of those hillslope pixels as the elevation of drainage pixels tends 564 

to decrease along the river channel and HAND is the elevation difference between any hillslope 565 

pixel and its nearest drainage pixel. Eventually, some hillslope pixels could be no longer 566 

inundated if their new HAND values exceed the water depth. Figure 11 well depicted the 567 

shrinking of the predicted flood extents as we increase drainage thresholds in both study areas. 568 

However, given the fact the locations of those HAND value changes are determined by flow 569 

direction rather than chosen manually, this may reduce overestimation and improve predictions, 570 

such as the case in Clarksville, but it may also introduce more underestimation, such as the case 571 

in Rock Valley, and therefore and does not always indicate improvements to results. 572 
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5 Discussion 573 

5.1 Analysis of the Underestimation Factors for WBH 574 

While WBH provided comparable predictions for Rock Valley, it has some underestimation in 575 

Clarksville caused by three possible factors: 1) input data resolution loss during data format 576 

conversion; 2) limitations in algorithm used for resolving flats, which results in elevation 577 

increase in specific locations; and 3) low values for depth derived from the synthetic rating curve. 578 

There are two major factors that could introduce input data resolution loss during the 579 

calculation of the WBH system's HAND matrix including data format and conversion. Because 580 

TIFF is not a well-supported format for web applications, the DEM data is converted to an RGB 581 

PNG file from the original format of TIFF for use in the web-based system. The system must 582 

then convert the RGB values back to elevation values in order to perform a pixel-level 583 

computation. This two-way conversion might introduce uncertainty into the HAND matrix 584 

calculation as pixels on RGB images range from 0 to 255 but have a much wider range in their 585 

original format Fitting a range of values to a narrower new range could compress the data and 586 

result in precision loss. Furthermore, the system stores each pixel's HAND value in integer 587 

format. This is because the system is designed and optimized to run efficiently on standard 588 

personal computers. As a result, it makes use of the efficient built-in data structure of the 589 

programming language that is used to create the system. The system's core language, JavaScript, 590 

handles arrays of integers more efficiently than arrays of float numbers. 591 

As mentioned in the previous section, HAND matrix generation is based on flow directions 592 

of pixels and is derived from a hydrologically coherent DEM after flats (due to both natural flats 593 

and pit-resolving algorithms) are removed. To resolve the imperfections on the DEM, the WBH 594 

system employs the algorithm proposed by (Barnes et al. 2014). This algorithm first detects flats, 595 

which consist of a cluster of nearby pixels with equal elevation values, and then raises the 596 
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elevation of those pixels based on their distance from the surrounding non-flat pixels (referred to 597 

as the gradient away from higher terrain) and the outlet of the entire flat area (referred to as the 598 

gradient towards lower terrain). The algorithm increases the elevation of a pixel more if that 599 

pixel is closer to the non-flat surrounding pixels. Similarly, the further a pixel is away from the 600 

flat area's outlet, the greater the elevation increase will be. As a result, it ensures the generation 601 

of flow direction for each pixel at the expense of changing directions for some pixels for which 602 

the elevation values increase. In the upper box of Figure 12, the stream initially flows downward 603 

before merging with the mainstream to the right. However, as the segment's elevation rises, it 604 

flows upward, merges with the main channel, and disconnects the stream in between. Same 605 

reason also applies to the situation in the lower box but is less obvious. This is unavoidable for 606 

flat resolving algorithms because they require elevation changes to force flows to drain from 607 

previously flat regions. As a result, the inundation condition and localized flow directions may 608 

differ from what the raw DEM indicates.  609 

 610 

Figure 12. Predictions of flood inundation in a 100-year scenario (b) and visualization of the 611 

corresponding HAND matrix (a). The underestimation in the upper and lower black boxes is primarily 612 

due to elevation changes caused by the pit-removal algorithm and a small depth estimate derived from the 613 

synthetic rating curve. 614 

 615 
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Although the first two factors can cause some localized changes in the inundation condition, 616 

we believe that it is the last reason the primary contributor to the underestimation in Clarksville 617 

because elevation increase caused by the DEM conditioning occurred to only 4.8 percent of the 618 

pixels in the comparison. Among those 4.8 percent pixels, approximately 77 percent only had a 619 

one-meter elevation increase. Furthermore, the results in Rock Valley were generated using the 620 

same computation framework and algorithm but did not show significant underestimation 621 

compared to those from NWCH. The depth values derived from the synthetic rating curve and 622 

the corresponding depths in each catchment are shown in Figure 13.  623 

 624 

Figure 13. The depth estimates in meter from the synthetic rating curve (red horizontal line) and from 625 

each catchment in 100-year flood scenarios in Clarksville (a) and Rock Valley (c)and 500-year flood 626 

scenarios in Clarksville (b) and Rock Valley (d) 627 

 628 

The HAND model is a ‘static’ inundation mapping technique, as opposed to models that rely 629 

on hydrodynamic simulations, such as a HEC-RAS model. As a result, it may fail to provide as 630 

reliable inundation extent predictions in areas where a single depth is not enough to reflect the 631 

situations in sub-areas. As illustrated in Figure 13 (a) and (b), the synthetic depths are too small 632 
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compared to the depths in each catchment, therefore making the single value less representative 633 

of the inundation condition in general. However, �� can produce favorable results in areas where 634 

synthetic situation is relatively consistent with conditions in catchments, such as Rock Valley. 635 

Furthermore, compared to multi-depth approaches, �� requires significantly less data and 636 

computational efforts compared to multi-depth approaches even the multi-depth ones are already 637 

quite data parsimonious compared to many traditional flood modeling approaches and the 638 

NWCH implementation.  639 

We believe that an efficient flood response strategy could first benefit from a fast model, 640 

such as the single-depth HAND framework, that requires the least data but can accurately show 641 

where major inundation will happen in order to support mitigation and planning decisions  642 

(Carson et al. 2018, Teague et al. 2021). Then it can follow a refined model, such as the multi-643 

depth HAND, to ensure the inundation extent prediction free from major mismatches to benefit 644 

the accurate evacuation (Alabbad et al. 2021) and protection of people and property. Traditional 645 

flood inundation models can still be used for long-term planning, damage assessment, and 646 

documentation for the flood characteristics (such as inundation extent, localized maximum 647 

volume & stage), and serve as a reference to validate and improve data-driven flood models.  648 

Although the running time of NWCH and WBH is hardly comparable as the former runs on 649 

the Resourcing Open Geospatial Education and Research (ROGER) supercomputer housed at 650 

NSF cyberGIS Facility whereas the latter runs on a personal desktop, we still include some rough 651 

estimations of both implementations here to give readers a sense of their computation efficiency. 652 

Liu et al. (2016) reported that for NWCH, the 10-m HAND raster for each HUC 6 computation 653 

unit tested required an estimated 65.26 CPU cores and took about 0.54 CPU hours to generate on 654 

ROGER HPC. Whereas the WBH requires about 15 seconds to finish computing the 5m HAND 655 
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raster for a typical HUC 12 sub-watershed on a standard desktop with i7-2600 CPU (Li and 656 

Demir 2022). Given the fact there are about 335 HUC 6 watersheds and 90,000 HUC 12 sub-657 

watersheds in the continental United States, WBH will require a theoretical running time of 16.8 658 

minutes to compute a HUC 6 watershed on the same personal desktop mentioned above. It is 659 

thus obvious that the original implementation of HAND is significantly more efficient than the 660 

NWCH in terms of computational cost and resources for HAND layer generation. Once HAND 661 

values are computed, NWCH and WBH have comparable computational efficiency in creating 662 

the flood maps as the last step, namely a pixel-by-pixel comparison between the water depth and 663 

the HAND matrix, is the same in the two approaches. Both approaches will require just a few 664 

seconds to create a flood map for a HUC8 watershed. 665 

Last but not least, WBH is just one possible implementation of the original HAND, and more 666 

accurate implementations could be designed to avoid the data precision issue (the first factor 667 

discussed in this section that caused the underestimation) based on different needs of usage 668 

scenarios. For instance, we could build stand-alone applications where data format conversion is 669 

not necessary. Or we could preserve the different digits of DEM pixels in separate color channels.   670 

5.2 Evaluation of Multi-Depth Approaches and Drainage Threshold Parameter 671 

Given the performance comparison depicted in Figures 7 to 10, we think that �� and �� 672 

outperform ����	
 because these three generate comparable results but ����	
 necessitates 673 

additional computation to determine the areas that each catchment outlet drains so that varied 674 

water depths can be applied to the appropriate locations. The ����	
 and NWCH computations 675 

differ in that the FIM 3 versions consider flooding in each selected catchment separately as water 676 

is not allowed to spread beyond the catchment boundary. The scope of each catchment is 677 

recorded in a GeoPackage file and stored as ‘static’ data that is not updated constantly. By 678 

contrast, in ����	
, the region each outlet drains is defined by flow directions, which means that 679 
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the area an outlet controls varies between different thresholds and DEM inputs. Therefore, ����	
 680 

provides a more accurate representation of possible changes to the topography (such as dredging 681 

and land cover changes) and provides stakeholders with greater flexibility.  682 

Previous research has demonstrated that a drainage threshold of 4 km2 reduces mismatches 683 

and improves inundation extent forecasts (Nobre et al. 2016). However, the findings of this study 684 

reveal that the 4 km2 does not produce the best results in either study region since it is too small 685 

and leads to overestimation.  686 

Conclusion 687 

In this study, we first examined the performance of two implementations of the HAND model, 688 

NWCH and WBH, in terms of the extent maps generated from both approaches to investigate the 689 

efficacy of the simpler approach of HAND versus a more complex one. The results show that the 690 

WBH with the least data input (a single water depth value, an unadjusted drainage threshold, and 691 

DEM) can generate comparable inundation extent predictions to the NWCH in areas where the 692 

water depths from the synthetic rating curves and those derived from each catchment’s separate 693 

rating curves are relatively consistent. Otherwise, WBH predictions with the simplest model 694 

configuration may be underestimated due to a combination of 1) localized flow direction changes 695 

caused by the pit-removing algorithm; 2) inaccuracy of the HAND values at a pixel level due to 696 

data format transformation and storage; and 3) differences between the depth estimates for the 697 

synthetic rating curves and the rating curves for each catchment. However, this underestimation 698 

can be avoided by employing multiple water depths and can also be avoided by applying 699 

carefully designed pre-processing steps to keep data precisions.  700 

We also tested the performance of HAND with various model configurations for WBH 701 

model. Our results indicate that using 4 km2 as the drainage threshold value as suggested by 702 

early studies results in too many overestimations in both study areas. In our cases, a good 703 
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threshold falls in the range of 8 to 12 % of the total area. Once exceeding the optimal threshold, 704 

the model performance will become stable. We did not see significant performance differences 705 

among cases with the three multi-depth approaches (��, ��, and ����	
) as no approach can 706 

consistently outperform the others considering different flooding scenarios and study areas. We, 707 

therefore, believe that �� and �� are better than ����	
 as they require less computation effort. 708 

Besides that, all three multi-depth approaches are more robust to factors that may lead to 709 

underestimation as compared with ��. 710 

The results of this study demonstrate the efficacy of the original HAND in flood extent 711 

prediction. It requires far fewer computational resources and data dependencies compared to the 712 

well-studied NWCH implementation thanks to its simple computation framework. The original 713 

HAND is especially suitable for applications where we need acceptable accuracy but fast results, 714 

where the inputs, such as DEM, are at constant changes, and where we need to deal with inputs 715 

not following pre-defined settings of the NWCH, such as water depth observations collected not 716 

at the catchment outlets defined in NHDPlus dataset. 717 

 718 

Software availability 719 

Software: NOAA Flood inundation mapping and evaluation software 720 

Developer: NOAA-OWP, National Water Center 721 

Operating systems: Windows, Linux, and Mac OSX 722 

Dependent software: Docker 723 

Availability: The software is publicly available and can be accessed from the GitHub repository 724 

at https://github.com/NOAA-OWP/inundation-mapping 725 

 726 

Software: HAND Multi-Depth Module 727 
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Developer: Zhouyayan Li, Ibrahim Demir 728 

Availability: The module is publicly available and can be accessed from the GitHub repository 729 

at https://github.com/uihilab/HandMultiDepth.  730 

Readers can access https://hydroinformatics.uiowa.edu/lab/handmultidepth for an interactive 731 

demonstrating webpage to see how the module works. 732 
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Appendix 746 

 747 
Table A1. List of Abbreviations 748 

Abbreviation Definition 

B 

 

Bias, an index to evaluate the model's tendency of making positive (flooded) 

predictions versus negative (dry) predictions 

DA 
A multi-depth approach that takes the average of depth values from rating curves of 

multiple catchments weighted by catchment areas 

DL 
A multi-depth approach that takes the average of depth values from rating curves of 

multiple catchments weighted by catchment stream length 

DLocal A multi-depth approach that applies depth values to the corresponding provider 
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catchments without taking the average 

DS 
A single-depth approach that uses depth value derived from synthetic rating curve 

to compare with HAND value for the entire study area 

F 
Fitness Statistics, an index evaluating model performance that focuses more on 

flooded pixels 

H Hit Rate, indicating how many flooded pixels are recognized by a model 

HAND Height Above Nearest Drainage 

K 
Kappa value, an index evaluating model performance that focuses more on dry 

pixels 

NWC National Water Center 

NWM National Water Model 

NWCH HAND framework implemented at NWC 

PC Proportion Correct, an index indicating how many predictions are correct 

WBH 
Web-based HAND, a web framework designed to run the original HAND on-the-

fly 

 749 

 750 

Pseudocode for Multi-Depth Module 751 

 752 
# HAND—HAND grid, recording HAND values of each pixel in a study area. 753 

# drainageMx—drainage Matrix, recording how many upstream pixels each pixel drains, same dimension with 754 

the HAND grid. Generated along with the HAND grid.  755 

# flowMx—flow direction Matrix, recording the D8 flow direction of each pixel, same dimension with the 756 

HAND grid. Generated along with the HAND grid. 757 

# pointList—a list of position or index of all pixels in a study area, same dimension with the HAND grid. 758 

Encoded before all computation starts. 759 

# locationList—a nested list of locations where the custom depth values to be applied, each element of the list is 760 

the X, Y coordinates or row & column index of the locations. This has to be provided.  761 

# depthList—a list of water depths assigned to locations in locationList, same length with locationList Has to be 762 

provided 763 
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# areaList—a list of area drained by each pixel in the location List, same length with locationList. Can be 764 

obtained from existing datasets, such as NHDPlus, measurements on a real map or a digital map such as DEM, or be 765 

derived using flowMx.  766 

# streamList— a list of stream length each pixel controls in the location List, same length with locationList. Can 767 

be obtained from existing datasets, such as NHDPlus, or measurements on a real map or a digital map such as DEM. 768 

# depth—a depth value that will control all pixels that are not drained by any custom drainage point in 769 

locationList. Has to be provided.  770 

 771 

Procedure dye(drainageMx, flowMx, locationList, pointList): 772 

 # initial a new matrix filled with zero to record which upstream pixel  773 

# will be drained by which drainage pixel 774 

colorMx = zeros(size=HAND.size)     775 

 776 

# get drainage area for all locations in locationList 777 

drainageList = getDrainArea(drainageMX, locationList) 778 

 for all location in locationList do 779 

  upstreamPoints = getUpstreamPoints(flowMx, location, pointList) 780 

    for all point in upstreamPoints do 781 

   if colorMx[point] == 0 or colorMx[point] > drainageList[location] do 782 

    # Update the color of current point if it has not been changed before 783 

    # or it is controlled by a more downstream point 784 

    colorMx[point] = drainageList[location] 785 

 return colorMx, drainageList 786 

 787 

Procedure multiDepth(pointList, HAND, depthList, depth, mode): 788 

# Initial a new matrix filled with zero to record the final depth of each pixel  789 

depthMx = zeros(size=HAND.size)     790 

# Initial a new matrix filled with zero to record the inundation condition of each pixel  791 
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# where 0 is dry and 1 is flooded 792 

floodMx = zeros(size=HAND.size)     793 

 794 

colorMx, drainageList = dye(drainageMx, flowMx, locationList, pointList) 795 

 796 

 # Compute inundation extent using DA 797 

 if mode == ‘Da’ do 798 

  depth_DA = weightedAvg(depthList, areaList) 799 

  for all point in pointList do 800 

if colorMX[point] != 0 do 801 

    if depth_DA > HAND[point] do 802 

     floodMx[point] = 1 803 

   else if depth > HAND[point] do 804 

floodMx[point] = 1 805 

 806 

 # Compute inundation extent using DL 807 

elif mode == ‘Dl’ do 808 

  depth_DL = weightedAvg(depthList, streamList) 809 

  for all point in pointList do 810 

if colorMX[point] != 0 do 811 

    if depth_DL > HAND[point] do 812 

     floodMx[point] = 1 813 

   else if depth > HAND[point] do 814 

floodMx[point] = 1 815 

 816 

 # Compute inundation extent using DLocal 817 

else do 818 

  for all point in pointList do 819 
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   # Update the inundation conditions for pixels controlled/not controlled by custom  820 

   # locations in locationList seperately 821 

   if colorMX[point] != 0 do 822 

    depthMx[point] = depthList[index of colorMx[point] in deinageList] 823 

    if depthMx[point] > HAND[point] do 824 

     floodMx[point] = 1 825 

   else if depth > HAND[point] do 826 

    floodMx[point] = 1 827 

 return floodMx 828 

 829 

Procedure getDrainArea(drainageMx, locationList): 830 

 drainList = empty list with the same dimension with locationList 831 

 for all location in locationList do 832 

  append drainageMx[location] to drainList  833 

 return drainList 834 

 835 

Procedure getUpstreamPoints(flowMx, location, pointList): 836 

 # Recursively find all upstream points of the given location based on flowMx  837 

# and put those points in a variable upstreamPoints 838 

 return upstreamPoints 839 

 840 

Procedure weightedAvg(depthList, weights): 841 

 avg = 0 842 

 for every item in depthList do 843 

  avg += depthList[item]*weights[item] 844 

 return avg /= sum(weights) 845 

 846 

 847 
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